3.976 \(\int \frac{x^4}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=261 \[ -\frac{c^{3/2} \sqrt{a+b x^2} \text{EllipticF}\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right ),1-\frac{b c}{a d}\right )}{3 b d^{3/2} \sqrt{c+d x^2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac{2 \sqrt{c} \sqrt{a+b x^2} (a d+b c) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 b^2 d^{3/2} \sqrt{c+d x^2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{2 x \sqrt{a+b x^2} (a d+b c)}{3 b^2 d \sqrt{c+d x^2}}+\frac{x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 b d} \]

[Out]

(-2*(b*c + a*d)*x*Sqrt[a + b*x^2])/(3*b^2*d*Sqrt[c + d*x^2]) + (x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*b*d) + (
2*Sqrt[c]*(b*c + a*d)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*b^2*d^(3/2)*
Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) - (c^(3/2)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)
/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*b*d^(3/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.162298, antiderivative size = 261, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {479, 531, 418, 492, 411} \[ \frac{2 \sqrt{c} \sqrt{a+b x^2} (a d+b c) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 b^2 d^{3/2} \sqrt{c+d x^2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{2 x \sqrt{a+b x^2} (a d+b c)}{3 b^2 d \sqrt{c+d x^2}}-\frac{c^{3/2} \sqrt{a+b x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 b d^{3/2} \sqrt{c+d x^2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac{x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[x^4/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

(-2*(b*c + a*d)*x*Sqrt[a + b*x^2])/(3*b^2*d*Sqrt[c + d*x^2]) + (x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*b*d) + (
2*Sqrt[c]*(b*c + a*d)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*b^2*d^(3/2)*
Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) - (c^(3/2)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)
/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*b*d^(3/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 479

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(2*n
- 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q) + 1)), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{x^4}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx &=\frac{x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 b d}-\frac{\int \frac{a c+2 (b c+a d) x^2}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{3 b d}\\ &=\frac{x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 b d}-\frac{(a c) \int \frac{1}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{3 b d}-\frac{(2 (b c+a d)) \int \frac{x^2}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{3 b d}\\ &=-\frac{2 (b c+a d) x \sqrt{a+b x^2}}{3 b^2 d \sqrt{c+d x^2}}+\frac{x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 b d}-\frac{c^{3/2} \sqrt{a+b x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 b d^{3/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt{c+d x^2}}+\frac{(2 c (b c+a d)) \int \frac{\sqrt{a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 b^2 d}\\ &=-\frac{2 (b c+a d) x \sqrt{a+b x^2}}{3 b^2 d \sqrt{c+d x^2}}+\frac{x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 b d}+\frac{2 \sqrt{c} (b c+a d) \sqrt{a+b x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 b^2 d^{3/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt{c+d x^2}}-\frac{c^{3/2} \sqrt{a+b x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 b d^{3/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt{c+d x^2}}\\ \end{align*}

Mathematica [C]  time = 0.277404, size = 201, normalized size = 0.77 \[ \frac{-i c \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} (a d+2 b c) \text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{b}{a}}\right ),\frac{a d}{b c}\right )+d x \sqrt{\frac{b}{a}} \left (a+b x^2\right ) \left (c+d x^2\right )+2 i c \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} (a d+b c) E\left (i \sinh ^{-1}\left (\sqrt{\frac{b}{a}} x\right )|\frac{a d}{b c}\right )}{3 b d^2 \sqrt{\frac{b}{a}} \sqrt{a+b x^2} \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

(Sqrt[b/a]*d*x*(a + b*x^2)*(c + d*x^2) + (2*I)*c*(b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE
[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*c*(2*b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*
ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*b*Sqrt[b/a]*d^2*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.02, size = 333, normalized size = 1.3 \begin{align*}{\frac{1}{3\,{d}^{2}b \left ( bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac \right ) } \left ( \sqrt{-{\frac{b}{a}}}{x}^{5}b{d}^{2}+\sqrt{-{\frac{b}{a}}}{x}^{3}a{d}^{2}+\sqrt{-{\frac{b}{a}}}{x}^{3}bcd+ac\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) d+2\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) b{c}^{2}-2\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) acd-2\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) b{c}^{2}+\sqrt{-{\frac{b}{a}}}xacd \right ) \sqrt{b{x}^{2}+a}\sqrt{d{x}^{2}+c}{\frac{1}{\sqrt{-{\frac{b}{a}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x)

[Out]

1/3*((-b/a)^(1/2)*x^5*b*d^2+(-b/a)^(1/2)*x^3*a*d^2+(-b/a)^(1/2)*x^3*b*c*d+a*c*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c
)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*d+2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/
a)^(1/2),(a*d/b/c)^(1/2))*b*c^2-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(
1/2))*a*c*d-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b*c^2+(-b/a)^(
1/2)*x*a*c*d)*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/(-b/a)^(1/2)/d^2/b/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{b x^{2} + a} \sqrt{d x^{2} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^4/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{2} + a} \sqrt{d x^{2} + c} x^{4}}{b d x^{4} +{\left (b c + a d\right )} x^{2} + a c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*x^4/(b*d*x^4 + (b*c + a*d)*x^2 + a*c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{a + b x^{2}} \sqrt{c + d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(x**4/(sqrt(a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\sqrt{b x^{2} + a} \sqrt{d x^{2} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(x^4/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)), x)